# app/core/gemini.py import logging from typing import List import google.generativeai as genai from google.generativeai.types import HarmCategory, HarmBlockThreshold # For safety settings from google.api_core import exceptions as google_exceptions from app.config import settings logger = logging.getLogger(__name__) # --- Global variable to hold the initialized model client --- gemini_flash_client = None gemini_initialization_error = None # Store potential init error # --- Configure and Initialize --- try: if settings.GEMINI_API_KEY: genai.configure(api_key=settings.GEMINI_API_KEY) # Initialize the specific model we want to use gemini_flash_client = genai.GenerativeModel( model_name="gemini-2.0-flash", # Optional: Add default safety settings # Adjust these based on your expected content and risk tolerance safety_settings={ HarmCategory.HARM_CATEGORY_HATE_SPEECH: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, HarmCategory.HARM_CATEGORY_DANGEROUS_CONTENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, HarmCategory.HARM_CATEGORY_HARASSMENT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, HarmCategory.HARM_CATEGORY_SEXUALLY_EXPLICIT: HarmBlockThreshold.BLOCK_MEDIUM_AND_ABOVE, }, # Optional: Add default generation config (can be overridden per request) # generation_config=genai.types.GenerationConfig( # # candidate_count=1, # Usually default is 1 # # stop_sequences=["\n"], # # max_output_tokens=2048, # # temperature=0.9, # Controls randomness (0=deterministic, >1=more random) # # top_p=1, # # top_k=1 # ) ) logger.info("Gemini AI client initialized successfully for model 'gemini-1.5-flash-latest'.") else: # Store error if API key is missing gemini_initialization_error = "GEMINI_API_KEY not configured. Gemini client not initialized." logger.error(gemini_initialization_error) except Exception as e: # Catch any other unexpected errors during initialization gemini_initialization_error = f"Failed to initialize Gemini AI client: {e}" logger.exception(gemini_initialization_error) # Log full traceback gemini_flash_client = None # Ensure client is None on error # --- Function to get the client (optional, allows checking error) --- def get_gemini_client(): """ Returns the initialized Gemini client instance. Raises an exception if initialization failed. """ if gemini_initialization_error: raise RuntimeError(f"Gemini client could not be initialized: {gemini_initialization_error}") if gemini_flash_client is None: # This case should ideally be covered by the check above, but as a safeguard: raise RuntimeError("Gemini client is not available (unknown initialization issue).") return gemini_flash_client # Define the prompt as a constant OCR_ITEM_EXTRACTION_PROMPT = """ Extract the shopping list items from this image. List each distinct item on a new line. Ignore prices, quantities, store names, discounts, taxes, totals, and other non-item text. Focus only on the names of the products or items to be purchased. If the image does not appear to be a shopping list or receipt, state that clearly. Example output for a grocery list: Milk Eggs Bread Apples Organic Bananas """ async def extract_items_from_image_gemini(image_bytes: bytes) -> List[str]: """ Uses Gemini Flash to extract shopping list items from image bytes. Args: image_bytes: The image content as bytes. Returns: A list of extracted item strings. Raises: RuntimeError: If the Gemini client is not initialized. google_exceptions.GoogleAPIError: For API call errors (quota, invalid key etc.). ValueError: If the response is blocked or contains no usable text. """ client = get_gemini_client() # Raises RuntimeError if not initialized # Prepare image part for multimodal input image_part = { "mime_type": "image/jpeg", # Or image/png, image/webp etc. Adjust if needed or detect mime type "data": image_bytes } # Prepare the full prompt content prompt_parts = [ OCR_ITEM_EXTRACTION_PROMPT, # Text prompt first image_part # Then the image ] logger.info("Sending image to Gemini for item extraction...") try: # Make the API call # Use generate_content_async for async FastAPI response = await client.generate_content_async(prompt_parts) # --- Process the response --- # Check for safety blocks or lack of content if not response.candidates or not response.candidates[0].content.parts: logger.warning("Gemini response blocked or empty.", extra={"response": response}) # Check finish_reason if available finish_reason = response.candidates[0].finish_reason if response.candidates else 'UNKNOWN' safety_ratings = response.candidates[0].safety_ratings if response.candidates else 'N/A' if finish_reason == 'SAFETY': raise ValueError(f"Gemini response blocked due to safety settings. Ratings: {safety_ratings}") else: raise ValueError(f"Gemini response was empty or incomplete. Finish Reason: {finish_reason}") # Extract text - assumes the first part of the first candidate is the text response raw_text = response.text # response.text is a shortcut for response.candidates[0].content.parts[0].text logger.info("Received raw text from Gemini.") # logger.debug(f"Gemini Raw Text:\n{raw_text}") # Optional: Log full response text # Parse the text response items = [] for line in raw_text.splitlines(): # Split by newline cleaned_line = line.strip() # Remove leading/trailing whitespace # Basic filtering: ignore empty lines and potential non-item lines if cleaned_line and len(cleaned_line) > 1: # Ignore very short lines too? # Add more sophisticated filtering if needed (e.g., regex, keyword check) items.append(cleaned_line) logger.info(f"Extracted {len(items)} potential items.") return items except google_exceptions.GoogleAPIError as e: logger.error(f"Gemini API Error: {e}", exc_info=True) # Re-raise specific Google API errors for endpoint to handle (e.g., quota) raise e except Exception as e: # Catch other unexpected errors during generation or processing logger.error(f"Unexpected error during Gemini item extraction: {e}", exc_info=True) # Wrap in a generic ValueError or re-raise raise ValueError(f"Failed to process image with Gemini: {e}") from e